MSSM Higgs searches at the LHC

Bruno Lenzi CEA - Saclay On behalf of ATLAS and CMS collaborations

> MCTP Spring Symposium on Higgs Boson Physics Ann Arbor, Michigan, USA May 14th 2010

Outline

- Introduction
 - LHC, ATLAS and CMS
 - The MSSM Higgs sector
- Neutral Higgs boson searches
- Charged Higgs boson searches
- Conclusions

Results for $\sqrt{s} = 14 \,\mathrm{TeV}$, from (unless indicated otherwise):

- Expected Performance of the ATLAS Experiment, Detector, Trigger and Physics (CERN-OPEN-2008-020)
- CMS Physics Technical Design Report Vol.II (CERN/LHCC 2006-021)

LHC, ATLAS and CMS

- The LHC is running!
 - At 7 TeV, with increasing luminosity
 - Experiments taking data

- LHC
- Good
 - E
- Powe

• ~

- ~ 80% Electron efficiency with jet rejection of 10^5
- ~ 80% Photon efficiency with jet rejection of 10^3
- ~ 60% b-tagging efficiency with light jet rejection of 10^2
- ~ 50% hadronic τ efficiency with jet rejection of 10²
- Excellent Electron, Photon and Muon energy / Pt resolution

MSSM Higgs sector

- Two Higgs doublets, five physical states
 - three neutral: h, A and H
 - two charged: H[±]
- Two parameters at tree level
 - Mass of the CP-odd boson: m_A
 - Ratio of the v.e.v.s: tan β
- Large loop corrections
 - $m_h < m_Z$ becomes $m_h \lesssim 130 \text{ GeV}$
 - Fixed in benchmark scenarios (m_h-max used in most of the results)

Carena, Heinemeyer, Wagner, Weiglein Eur. Phys. J. C26 (2003) pp. 601-7 Masses

- Couplings (for large tan β)
 - W / Z suppressed, absent for A
 - Enhanced with respect to SM for 3rd generation and down type fermions
 - h is SM-like for large mA

Bruno Lenzi - CEA Saclay

Neutral Higgs bosons: production and decays

• Production ($\phi = h, H, A$)

- Decay modes (typical values for the interesting regions of the parameter space)
 - bb with BR ~ 90% Overwhelmed by QCD backgrounds
 - $\tau^+\tau^-$ with BR ~10% Possibilities in leptonic and hadronic final states
 - $\mu^+ \mu^-$ with BR ~ 0.03% Clean signature, excellent mass resolution, low yield
 - SUSY particles if allowed Depends strongly on additional parameters
- Mass degeneracy

- Of at least two of them in most of parameter space
- Handled by summing cross sections for searches

Neutral Higgs searches: $h/H/A \rightarrow \mu^+\mu^-$

• Motivation

ATLAS / CMS

- Clean signal with excellent mass resolution (3% against 20% for ττ)
- Potential to distinguish between h, H and A and provide measurement of tan β (from width)
- Sensitivity for both gluon fusion (ATLAS) and b-associated production (ATLAS / CMS)

Entries 6006

700[[]

600⁻

500

400

300 200 100

- Drawback: small BR (enhanced for high tan β)
- Backgrounds
 - Dominant: Drell-Yan Z (+ jets)
 - $t\bar{t} \rightarrow b\bar{b}\mu^+\mu^-\nu\bar{\nu}$
 - WW / ZZ very small
 - Can be estimated from data using $\mu^+\mu^-, e^+e^-, e^\pm\mu^\mp$

Neutral Higgs searches: $h/H/A \rightarrow \mu^+\mu^-$

- Event selection
 - Trigger on single-mu or di-muons (> 90% efficiency)
 - High-Pt isolated muon(s) (20 GeV)
- Background reduction
 - Cuts on E_T^{miss} , jet activity and angle between muons to reject tt and WW
- B-tagging requirements
 - ATLAS: two independent optimizations
 - 0 b-jet, dominated by Z + jets
 - \geq 1 b-jets, with important contribution from tt
 - CMS:
 - Two different strategies to increase efficiency for high and low-Pt b-jets

Neutral Higgs searches: $h/H/A \rightarrow \mu^+\mu^-$

- Discovery potential
 - Low to intermediate masses for tan $\beta > 20$
 - Sensitivity to tan β from m_{µµ} peak width
- Systematic uncertainties
 - Theoretical (~ 17%)

- Experimental (5 12%) ATLAS / CMS
 - Muon reconstruction efficiency, momentum scale and resolution
 - Jet energy scale and resolution
 - b-tagging efficiency and fake rate

Bruno Lenzi - CEA Saclay

MSSM Higgs searches at LHC

Neutral Higgs searches: $(b\overline{b}) h/H/A \rightarrow \tau \tau$

- Final states (tau decay products)
 - Leptons, leptons (ATLAS / CMS)
 - Leptons, hadrons (CMS, ATLAS to appear)
 - Hadrons, hadrons (CMS)
- Backgrounds
 - $Z \to \tau^+ \tau^-, t\bar{t}, W + jets$
 - QCD multi-jets in hadronic case
 - $Z \rightarrow e^+ e^- / \mu^+ \mu^-\!\!\!\!+$ jets for leptonic decay
- Systematic uncertainties
 - tau fake rates
 - Jet energy scale / resolution and E_T^{miss}
 - b-tagging efficiency and purity

- Tau identification
 - Hadronic:
 - 1 or 3 tracks, $P_T^{leading} = 10,20 \,\mathrm{GeV}$
 - Isolation in tracker
 - 50% efficiency with jet rejection > 100
 - Leptonic:
 - High-Pt isolated lepton
 - $m_{\tau\tau}$ using collinear approximation
- Background reduction
 - One or more b-tagged jets
 - Jet activity (tt, W + jets), di-lepton mass (Z)
 - CMS: lepton impact parameter, $m_T(\ell, E_T^{miss})$

Neutral Higgs searches: $(b\overline{b}) h/H/A \rightarrow \tau \tau \rightarrow 2\ell 4\nu$

- Motivation
 - Leptons to trigger on
 - Lower backgrounds
 - Z + jets and tt mainly
- Event selection
 - ATLAS: Cut on di-lepton mass against $Z \rightarrow e^+ e^- / \mu^+ \mu^-$
 - CMS: Displaced lepton impact parameters
 - Jet veto against tt
 - One or more b-tagged jets (analysis with no b-tagging for early data)

Neutral Higgs searches: $(b\bar{b}) h/H/A \rightarrow \tau \tau \rightarrow 2\ell 4\nu$

- Discovery potential
 - Best at low masses
 - Decreases quickly with mass
 - High tan β needed

- Systematic uncertainties
 - $Z \to \tau^+ \tau^-$ shape and normalization from data (modified $Z \to \mu^+ \mu^-$)
 - tt yields
 - Jet energy scale and resolution

Bruno Lenzi - CEA Saclay

MSSM Higgs searches at LHC

Neutral Higgs searches: $(b\overline{b}) h/H/A \rightarrow \tau \tau \rightarrow (e/\mu)$ had

- Motivation
 - Good BR and lepton for trigger
- Backgrounds
 - tt, single top, Z + jets, W + jets, QCD
- Systematic uncertainties
 - b-tagging, jet energy scale, lepton ID
- Discovery potential
 - Low to intermediate masses at relatively low tan β
 - Challenging for high masses

Neutral Higgs searches: $(b\overline{b}) h/H/A \rightarrow \tau \tau \rightarrow (e/\mu)$ had

- Motivation
 - Good BR and lepton for trigger
- Backgrounds
 - tt, single top, Z + jets, W + jets, QCD
- Systematic uncertainties
 - b-tagging, jet energy scale, lepton ID
- Discovery potential
 - Low to intermediate masses at relatively low tan β
 - Challenging for high masses

Neutral Higgs searches: $(b\bar{b}) h/H/A \rightarrow \tau \tau \rightarrow had had$

- Motivation:
 - High BR ($b\overline{b}$ not feasible)
 - Sensitivity for high masses
- Main background: QCD multi-jets
 - Estimated from data using same sign "tau's"
- Systematic uncertainties
 - Jet energy scale / resolution
 - τ fake rate from tracker misalignment

Neutral Higgs searches: $H/A \rightarrow \tilde{\chi}_2^0 \tilde{\chi}_2^0 \rightarrow 4\ell + E_T^{miss}$

- Scenarios:
 - MSSM / mSugra points favoring decays to leptons

A/H

 $\widetilde{\chi}_2^0$

 $\widetilde{\chi}^0_2$

• Backgrounds: tt, ZZ, Zbb, SUSY

- Event selection:
 - 4-leptons with opposite signs and flavors
 - Upper and lower bounds on E_T^{miss}
 - Cuts on di-lepton mass and jet multiplicity
- Systematic uncertainties
 - Small from experimental side
 - Strongly model dependent

Light charged Higgs boson searches $(m_{H^+} < m_t)$

• Final states:

- $\tau \rightarrow$ hadrons, W \rightarrow qq (ATLAS) \rightarrow High yields
- $\tau \rightarrow \ell \nu$, W \rightarrow qq (ATLAS) \rightarrow Isolated lepton from τ
- $\tau \rightarrow$ hadrons, W $\rightarrow \ell \nu$ (ATLAS / CMS) \rightarrow Isolated lepton from W
- Backgrounds
 - tt, W + jets, QCD, single top
- Common features
 - Presence of tau, large E_T^{miss} , b and light jets
 - ATLAS: H⁺ transverse mass reconstruction
- Systematic uncertainties
 - tt cross section, estimated from data (ATLAS)
 - b / τ-tagging efficiencies and fake rates
 - Jet energy scale

 $t\bar{t}$ estimation from $\mu\nu b\mu\nu b$

Light charged Higgs boson searches $(m_{H^+} < m_t)$

- $\tau \rightarrow$ hadrons, W \rightarrow qq (ATLAS)
 - Trigger on tau + E_T^{miss} (+ jets)
 - τ-jet, 2 b-tagged jets, at least 2 more
 - Veto on isolated lepton, tt reduced with likelihood discriminant
- $\tau \rightarrow Iv, W \rightarrow qq (ATLAS)$
 - Trigger on lepton + E_T^{miss}
 - Isolated lepton, at least 4 jets, 2 b-tagged, large E_T^{miss}
 - Hadronic W and top mass reconstruction
- τ →hadrons, W →Iv (ATLAS / CMS)
 - Trigger on lepton (+ $_{E_{T}^{miss}}$, ATLAS)
 - At least 3 jets, 1 b and 1 τ-tagged (or more ATLAS)
 - Large ${\cal E}_T^{miss}$, isolated lepton

MSSM Higgs searches at LHC

Heavy charged Higgs boson searches $(m_{H^+} > m_t)$

- Final states $(gg \rightarrow tbH^+ \text{ and } gb \rightarrow tH^+)$
 - $H^+ \to \tau \nu \, (W \to qq, \, \tau \to \text{hadrons})$
 - Similar to light charged Higgs analysis
 - CMS: Requires hard tau and jets
 - ATLAS: Likelihood discriminant based on tau, jets and E_T^{miss}
 - $H^+ \to tb \, (W \to qq \text{ and the other } W \to \ell\nu)$
 - 5 or 6 jets, 3 or 4 b-tagged
 - Constraints on W and t mass
 - Difficulties from combinatorics, likelihood used (ATLAS)

100 200 300 400 500 600 700 800 900 1000 m... [GeV]

100 200 300 400 500 600 700

Heavy charged Higgs boson searches $(m_{H^+} > m_t)$

- Final states $(gg \rightarrow tbH^+ \text{ and } gb \rightarrow tH^+)$
 - $H^+ \to \tau \nu \, (W \to qq, \, \tau \to \text{hadrons})$
 - Similar to light charged Higgs analysis
 - CMS: Requires hard tau and jets
 - ATLAS: Likelihood discriminant based on tau, jets and E_{T}^{miss}
 - $H^+ \to tb \, (W \to qq \text{ and the other } W \to \ell\nu)$
 - 5 or 6 jets, 3 or 4 b-tagged
 - Constraints on W and t mass
 - Difficulties from combinatorics, likelihood used (ATLAS)

ATLAS / CMS

Charged Higgs boson expected discovery potential

- Good sensitivity at low masses and/or high tan β , dominated by $H^+ \rightarrow \tau \nu$
- Difficult in intermediate tan β
 - Decays to SUSY particles might be an alternative

Conclusions

- Good discovery potential for MSSM Higgs at LHC
 - At least one Higgs boson will be found if present
 - Large regions of parameter space can be covered, some need high statistics
- Neutral Higgs boson
 - Sensitivity dominated by $h/H/A \rightarrow \tau^+ \tau^-$, coverage up to m_A ~ 800 GeV
 - $h/H/A \rightarrow \mu^+\mu^-$ helps at low masses and gives narrow peak
- Charged Higgs boson
 - Good sensitivity at low masses and high tan β with $H^+ \rightarrow \tau \nu$

Backup slides

MSSM scenarios studied

Neutral Higgs to SUSY particles, mSUGRA

Point	m0 (GeV/c2)	m1/2 (GeV/c2)	A0 (GeV/c2)	tanβ	sign(µ)
CMS A	60	175	0	10	+
CMS B	80	200	0	5	+
CMS C	50	150	0	5	+
ATLAS A	400	165	0	20	+
ATLAS B	125	165	0	20	+

ATLAS, charged Higgs

Scenario	OBS	mt (GeV)	M _{SUSY} (GeV)	μ (GeV)	M2, M3 (GeV)	At
А	H ⁺ to SUSY suppressed	175	500	200	1000	1000
В	m _h -max	170	1000	200	200, 800	Xt(2000) + μ/tan β

Neutral Higgs to SUSY particles, MSSM (ATLAS)

Set	M1 (GeV)	M2 (GeV)	μ (GeV)	m _{sl} , m _{stau} (GeV)	m _{sg} , m _{sq} (GeV)
1	90	180	-500	250	1000
2	100	200	-200	150, 250	800, 1000

- M_{SUSY}: soft-SUSY breaking mass
- µ: Higgsino mixing parameter
- m_{1/2}, M1, M2: gaugino masses
- M3: gluino mass
- m₀: scalar masses
- A0: trilinear coupling
- mtXt: off-diagonal entry in stop mass matrix